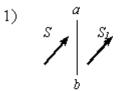
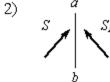
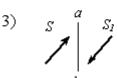

Вариант 1

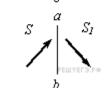
Часть 1

При выполнении заданий части 1 запишите номер выполняемого задания, а затем номер выбранного ответа или ответ. Единицы физических величин писать не нужно.

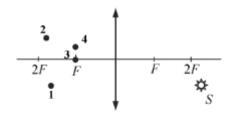

1. Ученик выполнил задание: «Нарисовать ход луча света, падающего из воздуха перпендикулярно поверхности стеклянной призмы треугольного сечения» (см. рисунок). При построении он




- 1) ошибся при изображении хода луча только при переходе из воздуха в стекло
- 2) правильно изобразил ход луча на обеих границах раздела сред
- 3) ошибся при изображении хода луча на обеих граница раздела сред
- 4) ошибся при изображении хода луча только при переходе из стекла в воздух


2. Предмет S отражается в плоском зеркале ab. Изображение предмета S [верно показано на рисунке

- 1) 1
- 2) 2
- 3)3
- 4) 4



3. Изображением точки S (см. рисунок), даваемым тонкой собирающей линзой с фокусным расстоянием F, является точка

- 1) 1
- 2) 2
- 3)3
- 4) 4

4. После прохождения белого света через красное стекло свет становится красным. Это происходит из-за того, что световые волны других цветов в основном

- 1) отражаются 2) рассеиваются 3) поглощаются 4) преломляются
- **5.** Период полураспада ядер радиоактивного изотопа висмута 19 мин. Через какое время распадется 75% ядер висмута в исследуемом образце? Ответ запишите в минутах.
- **6.** Длина волны рентгеновского излучения равна 10^{-10} м. Во сколько раз энергия одного фотона этого излучения превосходит энергию фотона видимого света длиной волны $4\cdot10^{-7}$ м?

7. Пучок света переходит из стекла в воздух. Частота световой волны равна v, скорость света в стекле равна v, показатель преломления стекла относительно воздуха равен n. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ФОРМУЛЫ

А) Длина волны света в стекле

1) $\frac{\nu}{m}$

Б) Длина волны света в воздухе

nv

2) $\frac{n}{v}$

3) 1

3) 1

 $\frac{\nu}{}$

A	Б
?	?

8. Установите соответствие между названиями постулатов и их формулировками. К каждой позиции первого столбца подберите нужную позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ПОСТУЛАТЫ БОРА

- А) первый
- Б) второй

ИХ ФОРМУЛИРОВКИ

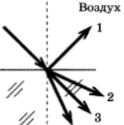
- 1) переходя из одного состояния в другое, атом излучает (поглощает) половину раз-ности энергий в начальном и конечном состояниях
- 2) переходя из одного состояния в другое, атом излучает (поглощает) квант энергии, равный разности энергий в начальном и конечном состояниях
- 3) атом может находиться только в одном из двух возможных состояний
- 4) атом может находиться только в одном из состояний с определенным значением энергии

A	Б
?	?

Часть 2

При выполнении заданий части 2 запишите номер выполняемого задания, а затем полное обоснованное решение и ответ.

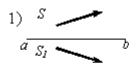
9. Красная граница фотоэффекта для вещества фотокатода $\lambda_0 = 290$ нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ .

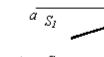

Вариант 2

Часть 1

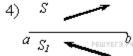
При выполнении заданий части 1 запишите номер выполняемого задания, а затем номер выбранного ответа или ответ. Единицы физических величин писать не нужно.

1. Световой луч падает на границу раздела двух сред: воздух — стекло. Какое направление — 1, 2, 3, или 4 — правильно указывает ход преломленного луча?

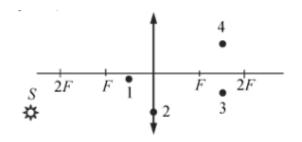




- 1) 1
- 2) 2
- 3) 3
- 4) 4


2. Предмет S отражается в плоском зеркале ab. Изображение предмета S верно показано на рисунке

- 1) 1
- 2) 2
- 3) 3
- 4) 4



3) S _____

3. Изображением точки S, которое даёт тонкая собирающая линза с фокусным расстоянием F (см. рисунок), является точка

- 1) 1
- 2) 2
- 3)3
- 4) 4

4. Сложение в пространстве когерентных волн, при котором образуется постоянное во времени пространственное распределение амплитуд результирующих колебаний, называется

- 1) дисперсией
- 2) поляризацией
- 3) интерференцией
- 4) преломление

5. Период полураспада изотопа натрия Na равен 2,6 года. Если изначально было 104 г этого изотопа, то сколько примерно его будет через 5,2 года? Ответ запишите в граммах.

6. Модуль импульса фотона в первом пучке света в 2 раза больше, чем во втором пучке. Чему равно отношение частоты света первого пучка к частоте второго?

7. Пучок света переходит из воды в воздух. Частота световой волны равна \mathbf{v} , скорость света в воздухе равна c, показатель преломления воды относительно воздуха равен n. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

А) Длина волны света в воздухе

 $\frac{c}{nv}$

Б) Длина волны света в воде

nv

2) =

no

c

4) $\frac{-}{v}$

A	Б
?	?

8. Установите соответствие между описанием приборов (устройств) и их названиями. К каждому элементу левого столбца подберите соответствующий элемент из правого и внесите в строку ответов выбранные цифры под соответствующими буквами.

ПРИБОР

- А) Устройство, в котором осуществляется управляемая ядерная реакция.
- Б) Устройство для измерения доз ионизирующих излучений и их мощностей.

НАЗВАНИЕ ПРИБОРА

- 1) фотоэлемент
- 2) ядерный реактор
- 3) лазер
- 4) дозиметр

A	Б
?	?

Часть 2

При выполнении заданий части 2 запишите номер выполняемого задания, а затем полное обоснованное решение и ответ.

9. Красная граница фотоэффекта для вещества фотокатода $\lambda_0 = 290$ нм. Фотокатод облучают светом с длиной волны $\lambda = 220$ нм. При каком напряжении между анодом и катодом фототок прекращается?

Инструкция по проверке и оценке работ учащихся по физике

Вариант 1

Часть 1

Номер	1	2	3	4	5	6	7	8
задания								
Правильный	4	2	2	3	38	4000	43	42
ответ								
Баллы	0;1;H	0;1;H	0;1;H	0;1;H	0;1;H	0;1;H	0;1;2;H	0;1;2;H

За полный правильный ответ 7 и 8 заданий ставится 2 балла, 1 балл — допущена одна ошибка; за неверный ответ (более одной ошибки) — 0 баллов.

Часть 2

9. Красная граница фотоэффекта для вещества фотокатода $\lambda_0 = 290$ нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U=1,5 В. Определите длину волны λ .

Решение.

Уравнение Эйнштейна для фотоэффекта: $\frac{hc}{\lambda} = A + \frac{mv^2}{2}$ (1).

Условие связи красной границы фотоэффекта и работы выхода: $\frac{hc}{\lambda_0} = A$ (2).

Выражение для запирающего напряжения — условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в элек-

тростатическом поле:
$$\frac{mv^2}{2} = eU$$
 (3).

Решая систему уравнений (1), (2) и (3), получаем: $\lambda = \frac{hc\lambda_0}{hc + eU\lambda_0}$.

Ответ: $\lambda \approx 215$ нм.

Выставление оценок:

11-13 баллов – «5» 8-10 баллов – «4»

5-7 баллов - «3»

Инструкция по проверке и оценке работ учащихся по физике

Вариант 2

Часть 1

Номер	1	2	3	4	5	6	7	8
задания								
Правильный	4	1	4	3	26	2	41	24
ответ								
Баллы	0;1;H	0;1;H	0;1;H	0;1;H	0;1;H	0;1;H	0;1;2;H	0;1;2;H

За полный правильный ответ 7 и 8 заданий ставится 2 балла, 1 балл — допущена одна ошибка; за неверный ответ (более одной ошибки) — 0 баллов.

Часть 2

9. Красная граница фотоэффекта для вещества фотокатода $\lambda_0 = 290\,$ нм. Фотокатод облучают светом с длиной волны $\lambda = 220\,$ нм. При каком напряжении между анодом и катодом фототок прекращается?

Решение.

Уравнение Эйнштейна для фотоэффекта: $\frac{hc}{\lambda} = A + \frac{mv^2}{2}$ (1).

Условие связи красной границы фотоэффекта и работы выхода: $\frac{hc}{\lambda_0} = A$ (2).

Выражение для запирающего напряжения — условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в элек-

тростатическом поле:
$$\frac{mv^2}{2} = eU$$
 (3).

Решая систему уравнений (1), (2) и (3), получаем: $U = \frac{hc}{e} \frac{\lambda_0 - \lambda}{\lambda_0 \lambda} \approx 1,36 \text{ B}$.

OTBET: $U \approx 1,36$ B.

Выставление оценок:

11-13 баллов – «5» 8-10 баллов – «4» 5-7 баллов – «3»

Критерии оценивания 9 задания

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	
І) записаны положения теории и физические законы, закономерности, применение которых	
необходимо для решения задачи выбранным способом (в данном случае: связь разности по-	
тенциалов электростатического поля с изменением кинетической энергии перемещающего	
ся в нем заряженного тела, второй закон Ньютона, формулы для расчета силы Лоренца и	
центростремительного ускорения);	
II) описаны все вводимые в решение буквенные обозначения физических величин (за исклю-	3
чением, возможно, обозначений констант, указанных в варианте КИМ и обозначений, ис-	
пользуемых в условии задачи);	
III) проведены необходимые математические преобразования (допускается вербальное указа-	
ние на их проведение) и расчеты, приводящие к правильному числовому ответу (допускается	
решение «по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения искомой величины	
Правильно записаны все необходимые положения теории, физические законы, закономерно-	
сти, и проведены необходимые преобразования. Но имеются следующие недостатки.Записи,	
соответствующие пункту II, представлены не в полном объеме или отсутствуют.	
или	
В решении лишние записи, не входящие в решение (возможно, неверные), не отделены от	
решения (не зачеркнуты, не заключены в скобки, рамку и т.п.).	2
или	
В необходимых математических преобразованиях или вычислениях допущены ошибки, и	
(или) преобразования/вычисления не доведены до конца.	
или	
Отсутствует пункт IV, или в нем допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев.	•
Представлены только положения и формулы, выражающие физические законы, применение	1

которых необходимо для решения задачи, без каких-либо преобразований с их использовани-	
ем, направленных на решение задачи, и ответа.	
ИЛИ	· .
В решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или	
утверждение, лежащее в основе решения), но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи.	
или	
В ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежа-	4
щем в основе решения), допущена ошибка, но присутствуют логически верные преобразова-	
ния с имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оце-	0
иом в 1, 2, 3 балла	0